DAVINCI-Dilute Aperture Visible Nulling Coronagraph Imager

Principal Investigator-Michael Shao (3020), co-Investigators- B. M.Levine, G. Vasisht, JPL, B. F. Lane, Draper labs, R. Woodruff, G. Vasudevan, Lockheed-Martin, R. Samuele, Northop Grumman, C.A. Lloyd, ITT, M. Clampin, R. Lyon, NSA/GSFC, O. Guyon, U. Arizona

Project Objective

To develop a mission concept:

- •Using 4 x 1m telescope array with resolution of 5m telescope
- Payload cost a fraction of monolithic telescope
- Capable of survey up to 100 stars

Recent Results

Uses novel beam combiner for greater throughput efficiency

Uses COTS mirrors from ITT

Initial survey of target stars can be done in the first 2 years

Project Description

Optical Telescope assembly and components for the DAViNCI concept. Four 1.1m aperture telescopes are separated to produce the resolution of a 5m diameter telescope.

DAVINCI instrument stowed in its a 5m launchfairing (left) and deployed in space (right).

Principal concept for recombination of light from 2 telescopes. There are 2 outputs for each telescope pair.

Block diagram of DAViCl instrument, dual nulling interferometer, Calibration wavefront sensor, planet detecting science camera, and spectrometer. The 2 nulllers give a θ^4 null pattern needed to block light from finite diameter stars.

Benefits to NASA and JPL (or significance of results)

Enable future NASA exo-planet detection missions

Enables spectroscopy of exo-planet atmospheres

Variable baseline configuration and u-v plane coverage enables study of AGN's

Nulling enables studies of accretion disk science